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Abstract—The so-called factored-form Kalman filter (KF) im-
plementations are designed to deal with the problem of numer-
ical instability of the conventional KF. They include Cholesky
factorization-based, UD-based and singular value decomposition
(SVD) algorithms. The SVD-based estimators are the most recent
developments in this realm. They were shown to be more robust
with respect to roundoff than the classical KF implementa-
tion and the previously derived factored-form methods. This
paper discusses further improvements in estimation accuracy
and numerical robustness of the recently proposed SVD-based
estimators.

Index Terms—Kalman filter, singular value decomposition,
numerical robustness

I. INTRODUCTION
In the Kalman filtering (KF) community, the so-called

factored-form (square-root) algorithms are the preferred imple-
mentations for treating a numerical instability problem of the
classical KF implementation [1]. The key idea of square-root
(SR) algorithms is to ensure the symmetric form and positive
semi-definiteness of error covariance matrix P by decompos-
ing it in the form P = SST and, next, re-formulating the filter
equations in terms of the resulted factors, only [2, Chapter 7].
Additionally, the Cholesky-based SR methodology allows the
computations with double precision as discussed in [3]. In
summary, the factorization in the form P = SST yields a wide
variety of the KF implementation methods, among which the
most popular are the Cholesky and the UD factorization-based
methods [4]–[7]. The most recent development in this realm
is the SVD-based KF implementations proposed in [8], [9].

Although considerable research has been devoted to
Cholesky- and UD-based filter implementations, rather less
attention has been paid to discussion of robust SVD-based
methods. So far, investigations have been confined to linear
SVD-based filtering methods in [8], [9] and to nonlinear
SVD-based strategy in [10]–[12] where some evidences of
its better estimation quality have been revealed. Concerning
linear SVD-based filters, the newly-developed SVD-based KF
implementation in [9] was shown to outperform its earlier
published counterpart in [8] as well as the conventional KF and
numerically stable Cholesky- and UD-based KF methods for
estimation accuracy and robustness (with respect to roundoff).

The author acknowledges the support from the Portuguese Na-
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In this paper we discuss the class of SVD-based KF implemen-
tations in detail, provide their comparative study and suggest
the way of enhancing their numerical stability when solving
ill-conditioned state estimation problem.

The paper is organized as follows. Section II contains the
problem statement. The main result and discussion of the class
of SVD-based filtering algorithms can be found in Section III.
Section IV represents the outcome of numerical experiments
and Section V concludes this work.

II. PROBLEM STATEMENT

Consider a linear discrete-time stochastic model

xk = Fk−1xk−1 +Bk−1uk−1 +Gk−1wk−1, (1)
yk = Hkxk + vk, wk ∼ N (0,Θk), vk ∼ N (0, Rk) (2)

where Fk ∈ Rn×n, Bk ∈ Rn×d, Gk ∈ Rn×q and Hk ∈ Rm×n

are known at each time instance tk. The vectors xk ∈ Rn,
uk ∈ Rd and yk ∈ Rm are unknown dynamic state, known
deterministic input and available measurement vector, respec-
tively. Random variables x0, wk and vk are assumed to be
normally distributed and satisfy the following properties:

E{x0} = x̄0, E
{
(x0 − x̄0)(x0 − x̄0)

T
}
= Π0,

E{wk} = E{vk} = 0, E
{
wkx

T
0

}
= E

{
vkx

T
0

}
= 0,

E
{
wkv

T
k

}
= 0, E

{
wkw

T
j

}
= Θkδkj ,

E
{
vkv

T
j

}
= Rkδkj

where covariance matrices Θk ∈ Rq×q and Rk ∈ Rm×m are
known. The symbol δkj is the Kronecker delta function.

The classical KF applied for estimating the hidden dynamic
state process {xk}Nk=1 of linear Gaussian state-space model
from the observed sequence {yk}Nk=1, yields the minimum
expected mean square error estimate {x̂k|k}Nk=1. The quantity
x̂k|k stands for state estimate at time instance tk, given
the available measurements {y1, . . . , yk}. The classical KF
recursion is given as follows [13, Theorem 9.2.1]:

Algorithm 1. KF (Conventional KF implementation)
INITIALIZATION: (k = 0) x̂0|0 = x̄0 and P0|0 = Π0.
TIME UPDATE: (k = 1, N ) � PRIORI ESTIMATION

1 x̂k|k−1 = Fk−1x̂k−1|k−1 +Bk−1uk−1,
2 Pk|k−1 = Fk−1Pk−1|k−1F

T
k−1 +Gk−1Θk−1G

T
k−1.
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MEASUREMENT UPDATE: (k = 1, N ) � POSTERIORI

3 Re,k = HkPk|k−1H
T
k +Rk, � ESTIMATION

4 Kk = Pk|k−1H
T
k R

−1
e,k,

5 x̂k|k = x̂k|k−1 +Kkek where ek = yk −Hkx̂k|k−1,
6 Pk|k = (I −KkHk)Pk|k−1.

The innovations of the KF are defined as ek = yk−Hx̂k|k−1.
It is worth noting here that Re,k = E

{
eke

T
k

}
and ek ∼

N (0, Re,k) for Gaussian state-space models.
The main aspect to be explored in this paper is a numerical

robustness of the class of SVD-based KF algorithms compared
to the conventional KF implementation and other SR methods.

III. THE SVD-BASED KALMAN FILTERING

The SVD factorization-based KF implementations utilize
the decomposition of symmetric and positive semi-definite
matrix P in the form of P = QΣQT where Q is an orthogonal
matrix and Σ is a diagonal matrix containing singular values.
Thus, the SVD-based implementations belong to the examined
SR family, because the square-root factor of P can be easily
defined as follows: S = QΣ1/2.

Definition 1 (see Theorem 1.1.6 in [14]). Every matrix A ∈
Cm×n of rank r can be written as follows:

A = WΣV ∗, Σ =

[
S 0
0 0

]
∈ Cm×n, S = diag{σ1, . . . , σr}

where W ∈ Cm×m, V ∈ Cn×n are unitary matrices, V ∗ is the
conjugate transpose of V , and S ∈ Rr×r is a real nonnegative
diagonal matrix. Here σ1 ≥ σ2 ≥ . . . ≥ σr > 0 are called the
singular values of A. (Note that if r = n and/or r = m, some
of the zero submatrices in Σ are empty.)

The SVD factorization-based KF methods have been re-
cently developed in [8], [9]. The basic steps for designing
such implementations is to factorize at the initialization step
the matrix Π0 = QΠ0

DΠ0
QT

Π0
where QΠ0

and DΠ0
are an

orthogonal and a diagonal matrices, respectively. Recall, the
diagonal matrix DΠ0 contains the singular values of Π0. Next,
the classical KF equations (Algorithm 1) are re-formulated
in terms of the SVD factors QPk|k and D

1/2
Pk|k

, which are
recursively updated in each iteration step instead of calculating
Pk|k. As all SR methods, this strategy improves the estimation
accuracy and numerical robustness with respect to roundoff
errors in ill-conditioned situations. The SVD is known as
the most accurate decomposition method, especially when the
matrix to be factorize is close to singular; see also the results
of numerical tests in [9].

Modern KF implementation methods are often expressed in
array form. This means that each KF iterate of the SVD-based
algorithms has the form of A = WΣVT where A ∈ R(k+s)×s

is given pre-array and the resulted post-array SVD factors are
defined as follows: W ∈ R(k+s)×(k+s), Σ ∈ R(k+s)×s and
V ∈ Rs×s. To be more precise, we consider the first SVD-
based KF developed in [8].

Algorithm 2. SVD-SRKF (SVD-based square-root KF)
INITIALIZATION: (k = 0)

1 Apply SVD factorization: Π0 = QΠ0DΠ0Q
T
Π0

.
2 Set x̂0|0 = x̄0 and QP0|0 = QΠ0 , D1/2

P0|0
= D

1/2
Π0

.
TIME UPDATE: (k = 1, N )

3 Apply Cholesky decomposition:
Θk = Θ

1/2
k Θ

T/2
k and Rk = R

1/2
k R

T/2
k

where Θ
1/2
k , R1/2

k are lower triangular matrices.
4 x̂k|k−1 = Fk−1x̂k−1|k−1 +Bk−1uk−1,
5 Assemble the pre-array and apply SVD as follows:[

D
1/2
Pk−1|k−1

QT
Pk−1|k−1

FT
k−1

Θ
T/2
k−1G

T
k−1

]
︸ ︷︷ ︸

Pre−array

=V

[
D

1/2
Pk|k−1

0

]
QT

Pk|k−1︸ ︷︷ ︸
Post−array SVD factors

6 Read-off from the post-arrays: QPk|k−1
, D1/2

Pk|k−1
.

MEASUREMENT UPDATE: (k = 1, N )
7 Assemble the pre-array and apply SVD as follows:[

R
−1/2
k HkQPk|k−1

D
−1/2
Pk|k−1

]
︸ ︷︷ ︸

Pre−array

= W

[
D

−1/2
Pk|k

0

]
VT

MU ,︸ ︷︷ ︸
Post−array SVD factors

8 Read-off from the post-arrays: D−1/2
Pk|k

and VMU ,
9 QPk|k = QPk|k−1

VMU ,

10 Kk =
(
QPk|kD

1/2
Pk|k

D
1/2
Pk|k

QT
Pk|k

)
HT

k R
−1
k ,

11 x̂k|k = x̂k|k−1 +Kkek, ek = yk −Hkx̂k|k−1.

Next, consider the most recent development in this research
domain that is the SVD factorization-based KF implementa-
tion proposed in [9].

Algorithm 3. SVD-KF (SVD-based KF)
INITIALIZATION: (k = 0)

1 Apply SVD factorization: Π0 = QΠ0DΠ0Q
T
Π0

,
2 Set x̂0|0 = x̄0 and QP0|0 = QΠ0 , D1/2

P0|0
= D

1/2
Π0

.
TIME UPDATE: (k = 1, N ) Apply SVD to the matrices

3 Θk = QΘk
DΘk

QT
Θk

and Rk = QRk
DRk

QT
Rk

.
4 x̂k|k−1 = Fk−1x̂k−1|k−1 +Bk−1uk−1,
5 Assemble the pre-array and apply SVD as follows:[

D
1/2
Pk−1|k−1

QT
Pk−1|k−1

FT
k−1

D
1/2
Θk−1

QT
Θk−1

GT
k−1

]
︸ ︷︷ ︸

Pre−array

=V

[
D

1/2
Pk|k−1

0

]
QT

Pk|k−1︸ ︷︷ ︸
Post−array SVD factors

6 Read-off from the post-arrays: QPk|k−1
, D1/2

Pk|k−1
.

MEASUREMENT UPDATE: (k = 1, N )
7 Assemble the pre-array and apply SVD as follows:[

D
1/2
Rk

QT
Rk

D
1/2
Pk|k−1

QT
Pk|k−1

HT
k

]
︸ ︷︷ ︸

Pre−array

= W

[
D

1/2
Re,k

0

]
QT

Re,k︸ ︷︷ ︸
Post−array SVD factors

,

8 Read-off from the post-arrays: QRe,k
and D

1/2
Re,k

,
9 K̄k = Pk|k−1H

T
k QRe,k

,
10 ēk = QT

Re,k
ek, ek = yk −Hkx̂k|k−1,

11 x̂k|k = x̂k|k−1 + K̄kD
−1
Re,k

ēk,
12 Assemble the pre-array and apply SVD as follows:
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[
D

1/2
Pk|k−1

QT
Pk|k−1

AT

D
1/2
Rk

QT
Rk

KT
k

]
︸ ︷︷ ︸

Pre−array

= Q

[
D

1/2
Pk|k

0

]
QT

Pk|k︸ ︷︷ ︸
Post−array SVD factors

where A = (I −KkHk), Kk = K̄kD
−1
Re,k

QT
Re,k

,

13 Read-off from the post-arrays: QPk|k and D
1/2
Pk|k

.

The readers are referred to [8] and [9] for a detailed
derivation of the SVD-SRKF (Algorithm 2) and SVD-KF
(Algorithm 3), respectively. It should be stressed that both
of them are algebraically equivalent to the conventional KF
implementation (Algorithm 1) and, hence, to each other. The
proof is not difficult to carry out by taking into account the
following two facts. First, the following formulas hold for the
conventional KF algorithm [15, p. 128-129]:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1 (3)

= Pk|kH
T
k R

−1
k . (4)

Pk|k =
(
P−1
k|k−1 +HT

k R
−1
k Hk

)−1

(5)

= (I −KkHk)Pk|k−1 (6)

= (I −KkHk)Pk|k−1(I −KkHk)
T +KkRkK

T
k . (7)

Second, taking into account that A = WΣVT where
W and V are orthogonal matrices, one obtains ATA =
(VΣWT )(WΣVT ) = VΣ2VT for each filtering pre-array to
be factorized. Thus, by comparing both sides of the obtained
matrix equalities in Algorithms 2 and 3, the related SVD-
based KF equations are proved. In summary, formula in line 7
of the SVD-SRKF (Algorithm 2) implies equation (5) for
computing a posteriori error covariance matrix and, hence,
formula in line 10 of Algorithm 2 is, in fact, equation (4)
for computing the feedback gain Kk. Unlikely, the SVD-KF
formula for calculating a posteriori error covariance matrix in
line 12 of Algorithm 3 implies equation (7). This symmetric
reformulation of the discrete-time Riccati equation suggested
in [16] is called the Joseph stabilized form. The symmetric
form enhances the filter robustness against roundoff errors
in some applications, although the factored-form algorithms
perform better when solving ill-conditioned state estimation
problems; see Example 7.2 and the obtained numerical results
illustrated by Fig. 7.1. in [2, Chapter 7]. Hence, both the SVD-
SRKF (Algorithm 2) and the SVD-KF (Algorithm 3) are
algebraically equivalent to the classical KF implementation
in Algorithm 1. However, the numerical behaviour of these
methods is no longer agree. Table I summarizes main theoret-
ical properties of the SVD-based KF implementations to be
examined. The following notations are used: sign “+” means
that the corresponding property is available, “–” implies that
the corresponding property is absent, and the question sign “?”
means that the corresponding question is still open and, hence,
the SVD-based filter with this underlying property might be
derived.

Having analyzed the information presented in Table I, the
following few findings are revealed. Firstly, both the SVD-
SRKF (Algorithm 2) and the SVD-KF (Algorithm 3) are

TABLE I
THEORETICAL COMPARISON OF THE SVD-SRKF AND SVD-KF

IMPLEMENTATIONS

No. Property SVD-SRKF SVD-KF
(Algorithm 2) (Algorithm 3)

1. Type of the filtering method:
◦ Covariance filtering + +
◦ Information filtering ? ?

2. Pre-array SVD factorizations:
◦ at Time Update 1 1
◦ at Measurement Update 1 2

3. Straightforward LF evaluation – +
4. Matrix decompositions involved:

◦ initial error covariance Π0 SVD SVD
◦ noise covariances Θk and Rk Cholesky SVD

5 Filter feasibility (Π0, Θk , Rk):
◦ positive definiteness + +
◦ positive semi-definiteness – +

6. Matrix inversions required: D
−1/2
Pk|k−1

, D
−1/2
Re,k

D
−1/2
Pk|k

R−1
k

7. Extended array form
(avoids any matrix inversion) ? ?

8. Numerical stability
◦ vs. the conventional KF improved improved
◦ vs. the factored-form KFs deteriorated similar

9. First-order error propagation ? ?

developed in the so-called covariance form. This means that
the SVD factors of the state error covariance Pk|k are prop-
agated in each iteration step. An alternative class of methods
propagates the inverse of Pk|k (called the information matrix)
rather than propagating Pk|k. Such KF implementations are
called information-type KF methods. The information filtering
has been derived for solving the so-called problems without
prior information, i.e. when the error covariance matrix at the
initialization stage, Π0, is too “large”. Recall, the value Pk|k
represents the uncertainty in the state estimate x̂k|k and, hence,
the term P−1

k|k represents the certainty in x̂k|k. Additionally, the
information filtering suggests a plausible solution to roundoff
problem when the measurement update stage is a source of
the problem as discussed in [2, p. 356-357]. To the best of
author’s knowledge, the information SVD-based filtering does
not exist, so far. This is an open question in the family of
SVD-based KF methods.

Second, we conclude that the SVD-SRKF (Algorithm 2)
requires one SVD factorization less than the SVD-KF (Al-
gorithm 3) and, hence, Algorithm 2 should be faster than
Algorithm 3. However, this additional SVD factorization ap-
peared at the measurement update stage of Algorithm 3 allows
for a simple and straightforward calculation of the likelihood
function (LF), since the required values QRe,k

and D
1/2
Re,k

are
directly available from the SVD-KF; see formula (25) in [9].
In contrast, the SVD-SRKF (Algorithm 2) does not provide
a possibility for straightforward LF computation.

Next, the SVD-SRKF (Algorithm 2) requires Cholesky
factorization for the covariance matrices Θk and Rk, mean-
while the SVD-KF (Algorithm 3) implies their SVD factor-
ization. Although the SVD is more time consuming than the
Cholesky decomposition, its utilization makes the SVD-KF
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(Algorithm 3) applicable for any matrices Θk ≥ 0 and Rk ≥ 0.
Meanwhile, the SVD-SRKF (Algorithm 2) works only when
Θk ≥ 0 and Rk ≥ 0 are positive definite matrices to ensure
the existence and uniqueness of Cholesky decomposition [17].
The Cholesky decomposition exists for positive semi-definite
matrices, however, it is not unique in this case [18]. Thus,
the SVD-SRKF (Algorithm 2) might be abruptly interrupted
by an error appeared while performing the Cholesky de-
composition. Hence, Algorithm 3 is preferable for practical
implementation, although it is expected to be slower than
Algorithm 2 because of utilizing SVD factorization instead
of Cholesky decomposition. It should be stressed that in case
of time-invariant systems, the corresponding factorization of
covariance matrices Θ and R is performed only once, i.e. it is
pre-computed at the initialization stage. Hence, for constant
(over time) covariances Θ and R, the difference in time
consumption between Algorithms 2 and 3 will be negligible.

Concerning the robustness of the SVD-based KF algorithms,
both the SVD-SRKF (Algorithm 2) and SVD-KF (Algo-
rithm 3) are more numerically stable than the conventional
KF implementation. Algorithm 3 shows similar numerical
behaviour as all factored-form KF methods when solving ill-
conditioned state estimation problems. It also outperforms
the SVD-SRKF (Algorithm 2) for estimation accuracy and
robustness [9]. However, to quantify theoretically the effect
of roundoff on the underlying KF recursion, the first-order
error propagation model should be derived for the SVD-based
implementations as discussed in [19], [20]. This methodology
provides upper bounds on the propagation of roundoff errors
and, hence, clearly indicates that some implementations pos-
sess better bounds than others. For the family of SVD-based
KF algorithms such theoretical investigation could be an area
for a future research.

Following [2, p. 288], one of the sources of numerical
instability of the KF is an inversion of the residual co-
variance matrix Re,k at the measurement update stage. The
factored-form KF implementations (the SR-, the UD- and
the SVD-based algorithms) typically require the inversion
of the corresponding factors of this matrix rather than the
full matrix Re,k. Indeed, as can be seen from line 11 of
Algorithm 3, the SVD-KF requires D

−1/2
Re,k

calculation. The
KF implementations can be improved further by avoiding any
matrix inversion operation. The key idea is to express the
corresponding filtering equations in the extended array form.
This implies the utilization of numerically stable orthogonal
transformations for computing the state estimate as shown
in [7]. Under this strategy, the dynamic state is computed by
a simple multiplication of the blocks that are read off from
the extended post-array, directly. Thus, no matrix inversion
operation is required; see [7, eq. (6)] and the explanation below
that formula. The extended array implementations exist for
the Cholesky-based filtering [7] and UD-based methods [21],
[22]. The question whether or not it is possible to design the
extended SVD-based implementations (to avoid any inversion
of the SVD factors) is still open.

Finally, form Table I we see that the SVD-SRKF (Algo-

rithm 2) requires the inversion of D
1/2
Pk|k−1

, D
1/2
Pk|k

and Rk,

meanwhile the SVD-KF (Algorithm 3) involves only D
−1/2
Re,k

calculation. For time-invariant measurement noise covariance
matrix R, the value R−1 can be pre-computed before the KF
recursion. All other matrices are to be inverted at each iteration
step of the filter. This partially explains a better numerical
behavior of the SVD-KF (Algorithm 3) compared to the
SVD-SRKF (Algorithm 2), because less matrix inversions are
required in Algorithm 3.

We note that the matrices D
1/2
Pk|k−1

, D1/2
Pk|k

and D
1/2
Re,k

are
diagonal matrices and, hence, their inversion is a simple n and
m divisions by the corresponding diagonal elements. Recall,
in the SVD-based filters these diagonal entries are the square
roots of sigma values of the corresponding matrices. The zero
entries might also appear in D

1/2
Pk|k−1

, D1/2
Pk|k

and D
1/2
Re,k

. When
implementing the SVD-based algorithms, the scalar divisions
should be performed for the non-zero diagonal elements, only.
If the matrix is close to singular, then some of the sigma
values are very small numbers and, hence, the division causes
large roundoff errors. To enhance the numerical robustness of
the SVD-based algorithms, it is suggested to perform scalar
divisions only for the square roots of sigma values that are
larger than the unit roundoff error. Computer roundoff for
floating-point arithmetic is often characterized by a single
parameter ϵroundoff , defined as the largest number such
that either 1 + ϵroundoff = 1 or 1 + ϵroundoff/2 = 1
in machine precision. When implementing in Matlab, this
means that we divide only by diagonal entries that are larger
than eps(class(A)) where A is the given variable. The
resulted numerically robust SVD-based KF implementations
are abbreviated to the NRSVD-SRKF and NRSVD-KF.

IV. NUMERICAL EXPERIMENTS
To perform the numerical comparative study, the set of ill-

conditioned test problems in [9] is utilized for assessing the
SVD-based filters.

Example 1. A linearized version of a satellite traveling in a
circular orbit is given as follows [23]:

xk =


1 1 0.5 0.5
0 1 1 1
0 0 1 0
0 0 0 0.606

xk−1 + wk−1, wk ∼ N (0,Θ)

where Θ = diag{[0, 0, 0, 0.63 · 10−2]} and x0 is a zero-mean
initial state with Π0 = I4}.

The measurement equations obey the following ill-
conditioned scheme:

yk =

[
1 1 1 1
1 1 1 1 + δ

]
xk + vk, vk ∼ N (0, δ2I2)

where for simulating the roundoff we assume that δ2 <
ϵroundoff , but δ > ϵroundoff . The term ϵroundoff denotes
the unit roundoff error.

The following KF implementation methods are explored:
• KF (the conventional implementation) in Algorithm 1;
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• SR-KF (the Cholesky-based method) designed in [13,
p. 434-436];

• UD-KF (the UD-based method) presented in [2, p. 261];
• SVD-SRKF (the SVD-based method) developed in [8];
• SVD-KF (the SVD-based method) developed in [9];
• the newly proposed robust nrSVD-SRKF version of the
SVD-SRKF;

• the newly proposed robust nrSVD-KF version of the
SVD-KF;

The following set of numerical experiments is performed.
For each value of ill-conditioning parameter δ (where δ →
ϵroundoff ), the system is simulated for k = 1, . . . , N with
N = 100 discrete time points. When the “true” trajectory
of the dynamic state xexact

k and the related measurements yk
are generated, k = 1, . . . , N . Next, the examined filtering
methods are applied for solving the inverse problem: given
simulated measurements, each filter under assessment yields
the state vector estimate x̂k|k, k = 1, . . . , N . For a fair
comparative study, the same filtering initial values, the same
system matrices and the same measurements are passed to all
KF implementations listed above. The outlined experiment is
repeated for M = 500 Monte-Carlo trials and, finally, the root
mean square error (RMSE) is computed as follows:

RMSExi =

√√√√ 1

MN

M∑
j=1

N∑
k=1

(
xj,exact
i,k − x̂j

i,k|k

)2

where M = 500 is the number of Monte-Carlo runs, N = 100
is the discrete time of the dynamic system, the xj,exact

i,k and
x̂j
i,k|k are the i-th entry of the “true” state vector (simulated)

and its estimated value obtained in the j-th Monte Carlo trial,
respectively. The norm ∥RMSEx∥2 is also reported in Table II.

When the obtained numerical results in Table II are ana-
lyzed, the following conclusions hold. For large δ, the problem
is well-conditioned and all implementation methods under
examination provide the same estimation accuracy. This is
in line with the theoretical results on algebraic equivalence
of all KF implementation methods. Second, while growing
ill-conditioning δ → ϵroundoff , the discrete-time algebraic
Riccati equation degradation is observed. It is easy to note
that the conventional KF technique possesses the worst per-
formance among the examined filtering algorithms. It fails at
δ = 10−8, while all other KF implementations manage this ill-
conditioned situation accurately. Next, both the SVD-SRKF
method and its nrSVD-SRKF variant fail when δ = 10−9.
Thus, the conclusions made in [9] is substantiated, namely:
i) the SVD-SRKF possesses the worst performance among all
factored-form KF algorithms under examination, and ii) the
SVD-KF outperforms the previously published SVD-SRKF
for estimation accuracy and numerical robustness. Here, the
previous comments are enriched in the following way: i)
the suggested strategy for improving the SVD-based filters’
robustness does not provide any additional benefit for the
SVD-SRKF variant, because the nrSVD-SRKF possesses the
worst performance among all factored-form KF algorithms
under examination as well as the original SVD-SRKF, and

ii) both the SVD-SRKF and the nrSVD-SRKF are the less
accurate methods among all factored-form KF algorithms
under examination.

In contrast to the SVD-SRKF variant, the way of improving
the SVD-based filters’ robustness suggested in this paper
works nicely for the SVD-KF method. As can be seen from
Table II, the new nrSVD-KF (see the last row in Table II)
outperforms not only any other SVD-based algorithm (see the
results for the SVD-SRKF, the nrSVD-SRKF and SVD-KF),
but also outperforms any other factored-form KF implementa-
tion under examination (the SR-KF and UD-KF algorithms).
Indeed, starting from δ = 10−9 and until δ = 10−16, the newly
proposed nrSVD-KF algorithm is the most accurate method,
because it provides the best estimation quality, i.e. it computes
the dynamic state with the smallest estimation error.

In summary, the theoretical expectations discussed in this
paper are realized. More precisely, the SVD-KF previously
published in [9] is improved in this paper. The resulted
nrSVD-KF implementation possesses a better robustness
(with respect to roundoff errors) compared to the SVD-KF.
An additional benefit of the novel SVD-based filtering via
the nrSVD-KF is the best performance among all algorithms
in the family of factored-form KF implementations, i.e. the
nrSVD-KF is more accurate than the Cholesky- and the UD-
based approaches.

V. CONCLUSION

In this paper, the class of SVD-based KF implementations
is investigated. The theoretical properties of the previously
proposed SVD-based estimators are discussed in details. Ad-
ditionally, a new strategy for improving the filters’ numerical
robustness is suggested. As a result, the most recently devel-
oped SVD-based KF implementation is improved further. The
newly suggested modification outperforms any other factored-
form (square-root) implementation for estimation accuracy in
ill-conditioned situations.
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